We have always used the energy of the sun as far back as humans have existed on this planet. As far back as 5,000 years ago, people “worshipped” the sun. Ra, the sun-god, who was considered the first king of Egypt. In Mesopotamia, the sun-god Shamash was a major deity and was equated with justice. In Greece there were two sun deities, Apollo and Helios. The influence of the sun also appears in other religions – Zoroastrianism, Mithraism, Roman religion, Hinduism, Buddhism, the Druids of England, the Aztecs of Mexico, the Incas of Peru, and many Native American tribes.
We know today, that the sun is simply our nearest star. Without it, life would not exist on our planet. We use the sun’s energy every day in many different ways.
When we hang laundry outside to dry in the sun, we are using the sun’s heat to do work — drying our clothes.
Plants use the sun’s light to make food. Animals eat plants for food. And as we learned in Chapter 5, decaying plants hundreds of millions of years ago produced the coal, oil and natural gas that we use today. So, fossil fuels is actually sunlight stored millions and millions of years ago.
Indirectly, the sun or other stars are responsible for ALL our energy. Even nuclear energy comes from a star because the uranium atoms used in nuclear energy were created in the fury of a nova – a star exploding.

Uses

Solar energy can be converted directly or indirectly into other forms of energy, such as heat and electricity. The major drawbacks (problems, or issues to overcome) of solar energy are: (1) the intermittent and variable manner in which it arrives at the earth’s surface and, (2) the large area required to collect it at a useful rate.
Solar energy is used for heating water for domestic use, space heating of buildings, drying agricultural products, and generating electrical energy.

Solar Thermal Heat

Hot Water

In the 1890s solar water heaters were being used all over the United States. They proved to be a big improvement over wood and coal-burning stoves. Artificial gas made from coal was available too to heat water, but it cost 10 times the price we pay for natural gas today. And electricity was even more expensive if you even had any in your town!
Many homes used solar water heaters. In 1897, 30 percent of the homes in Pasadena, just east of Los Angeles, were equipped with solar water heaters. As mechanical improvements were made, solar systems were used in Arizona, Florida and many other sunny parts of the United States.
By 1920, ten thousand solar water heaters had been sold. By then, however, large deposits of oil and natural gas were discovered in the western United States. As these low cost fuels became available, solar water systems began to be replaced with heaters burning fossil fuels.
Today, solar water heaters are making a comeback. There are more than half a million of them in California alone! They heat water for use inside homes and businesses. They also heat swimming pools like in the picture.
Panels on the roof of a building, contain water pipes. When the sun hits the panels and the pipes, the sunlight warms them.
That warmed water can then be used in a swimming pool.

Space heating

For these purposes, the general practice is to use flat-plate solar-energy collectors with a fixed orientation (position).
Where space heating is the main consideration, the highest efficiency with a fixed flat-plate collector is obtained if it faces approximately south and slopes at an angle to the horizon equal to the latitude plus about 15 degrees.
Solar collectors fall into two general categories: nonconcentrating and concentrating.
In the nonconcentrating type, the collector area (i.e. the area that intercepts the solar radiation) is the same as the absorber area (i.e., the area absorbing the radiation).
In concentrating collectors, the area intercepting the solar radiation is greater, sometimes hundreds of times greater, than the absorber area. Where temperatures below about 200o F are sufficient, such as for space heating, flat-plate collectors of the nonconcentrating type are generally used.
There are many flat-plate collector designs but generally all consist of (1) a flat-plate absorber, which intercepts and absorbs the solar energy, (2) a transparent cover(s) that allows solar energy to pass through but reduces heat loss from the absorber, (3) a heat-transport fluid (air or water) flowing through tubes to remove heat from the absorber, and (4) a heat insulating backing.
Solar space heating systems can be classified as passive or active. In passive heating systems, the air is circulated past a solar heat surface(s) and through the building by convection (i.e. less dense warm air tends to rise while more dense cooler air moves downward) without the use of mechanical equipment. In active heating systems, fans and pumps are used to circulate the air or the heat absorbing fluid.

Solar Thermal Electricity

Solar energy can also be used to make electricity.
Some solar power plants, like the one in the picture to the right in California’s Mojave Desert, use a highly curved mirror called a parabolic trough to focus the sunlight on a pipe running down a central point above the curve of the mirror. The mirror focuses the sunlight to strike the pipe, and it gets so hot that it can boil water into steam. That steam can then be used to turn a turbine to make electricity.
In California’s Mojave desert, there are huge rows of solar mirrors arranged in what’s called “solar thermal power plants” that use this idea to make electricity for more than 350,000 homes. The problem with solar energy is that it works only when the sun is shining. So, on cloudy days and at night, the power plants can’t create energy. Some solar plants, are a “hybrid” technology. During the daytime they use the sun. At night and on cloudy days they burn natural gas to boil the water so they can continue to make electricity.
Another form of solar power plants to make electricity is called a Central Tower Power Plant, like the one to the right – the Solar Two Project.
Sunlight is reflected off 1,800 mirrors circling the tall tower. The mirrors are called heliostats and move and turn to face the sun all day long.
The light is reflected back to the top of the tower in the center of the circle where a fluid is turned very hot by the sun’s rays. That fluid can be used to boil water to make steam to turn a turbine and a generator.
This experimental power plant is called Solar II. It was re-built in California’s desert using newer technologies than when it was first built in the early 1980s. Solar II will use the sunlight to change heat into mechanical energy in the turbine.
The power plant will make enough electricity to power about 10,000 homes. Scientists say larger central tower power plants can make electricity for 100,000 to 200,000 homes.

Solar Thermal Power Plants

Solar thermal power plants use the sun’s rays to heat a fluid, from which heat transfer systems may be used to produce steam. The steam, in turn, is converted into mechanical energy in a turbine and into electricity from a conventional generator coupled to the turbine. Solar thermal power generation is essentially the same as conventional technologies except that in conventional technologies the energy source is from the stored energy in fossil fuels released by combustion. Solar thermal technologies use concentrator systems due to the high temperatures needed for the working fluid. The three types of solar-thermal power systems in use or under development are: parabolic trough, solar dish, and solar power tower.

  • PARABOLIC TROUGH

The parabolic trough is used in the largest solar power facility in the world located in the Mojave Desert at Kramer Junction, California. This facility has operated since the 1980’s and accounted for the majority of solar electricity produced by the electric power sector in 2004.
A parabolic trough collector has a linear parabolic-shaped reflector that focuses the sun’s radiation on a linear receiver located at the focus of the parabola. The collector tracks the sun along one axis from east to west during the day to ensure that the sun is continuously focused on the receiver. Because of its parabolic shape, a trough can focus the sun at 30 to 100 times its normal intensity (concentration ratio) on a receiver pipe located along the focal line of the trough, achieving operating temperatures over 400 degrees Celcius.
A collector field consists of a large field of single-axis tracking parabolic trough collectors. The solar field is modular in nature and is composed of many parallel rows of solar collectors aligned on a north-south horizontal axis. A working (heat transfer) fluid is heated as it circulates through the receivers and returns to a series of heat exchangers at a central location where the fluid is used to generate high-pressure superheated steam. The steam is then fed to a conventional steam turbine/generator to produce electricity. After the working fluid passes through the heat exchangers, the cooled fluid is recirculated through the solar field. The plant is usually designed to operate at full rated power using solar energy alone, given sufficient solar energy. However, all plants are hybrid solar/fossil plants that have a fossil-fired capability that can be used to supplement the solar output during periods of low solar energy. The Luz plant is a natural gas hybrid.

  • SOLAR DISH

A solar dish/engine system utilizes concentrating solar collectors that track the sun on two axes, concentrating the energy at the focal point of the dish because it is always pointed at the sun. The solar dish’s concentration ratio is much higher that the solar trough, typically over 2,000, with a working fluid temperature over 750oC. The power-generating equipment used with a solar dish can be mounted at the focal point of the dish, making it well suited for remote operations or, as with the solar trough, the energy may be collected from a number of installations and converted to electricity at a central point. The engine in a solar dish/engine system converts heat to mechanical power by compressing the working fluid when it is cold, heating the compressed working fluid, and then expanding the fluid through a turbine or with a piston to produce work. The engine is coupled to an electric generator to convert the mechanical power to electric power.

  • SOLAR POWER TOWER

A solar power tower or central receiver generates electricity from sunlight by focusing concentrated solar energy on a tower-mounted heat exchanger (receiver). This system uses hundreds to thousands of flat sun-tracking mirrors called heliostats to reflect and concentrate the sun’s energy onto a central receiver tower. The energy can be concentrated as much as 1,500 times that of the energy coming in from the sun. Energy losses from thermal-energy transport are minimized as solar energy is being directly transferred by reflection from the heliostats to a single receiver, rather than being moved through a transfer medium to one central location, as with parabolic troughs. Power towers must be large to be economical. This is a promising technology for large-scale grid-connected power plants. Though power towers are in the early stages of development compared with parabolic trough technology, a number of test facilities have been constructed around the world.

Solar Cells or Photovoltaic Energy

We can also change the sunlight directly to electricity using solar cells.
Solar cells are also called photovoltaic cells – or PV cells for short – and can be found on many small appliances, like calculators, and even on spacecraft. They were first developed in the 1950s for use on U.S. space satellites. They are made of silicon, a special type of melted sand.
When sunlight strikes the solar cell, electrons are knocked loose. They move toward the treated front surface. An electron imbalance is created between the front and back. When the two surfaces are joined by a connector, like a wire, a current of electricity occurs between the negative and positive sides.
Individual solar cells are arranged together in a PV module and the modules are grouped together in an array. Some of the arrays are set on special tracking devices to follow sunlight all day long.
The electrical energy from solar cells can then be used directly. It can be used in a home for lights and appliances. It can be used in a business. Solar energy can be stored in batteries to light a roadside billboard at night. Or the energy can be stored in a battery for an emergency roadside cellular telephone when no telephone wires are around.
Some experimental cars also use PV cells. They convert sunlight directly into energy to power electric motors on the car.
But when most of us think of solar energy, we think of satellites in outer space.

Sources: Energy Kid´s page, Energy Quest

No related content found.